Phospholipase Cβ Serves as a Coincidence Detector through Its Ca2+ Dependency for Triggering Retrograde Endocannabinoid Signal

نویسندگان

  • Yuki Hashimotodani
  • Takako Ohno-Shosaku
  • Hiroshi Tsubokawa
  • Hidenori Ogata
  • Ken Emoto
  • Takashi Maejima
  • Kenji Araishi
  • Hee-Sup Shin
  • Masanobu Kano
چکیده

Endocannabinoids mediate retrograde signal and modulate transmission efficacy at various central synapses. Although endocannabinoid release is induced by either depolarization or activation of G(q/11)-coupled receptors, it is markedly enhanced by the coincidence of depolarization and receptor activation. Here we report that this coincidence is detected by phospholipase Cbeta1 (PLCbeta1) in hippocampal neurons. By measuring cannabinoid-sensitive synaptic currents, we found that the receptor-driven endocannabinoid release was dependent on physiological levels of intracellular Ca(2+) concentration ([Ca(2+)](i)), and markedly enhanced by depolarization-induced [Ca(2+)](i) elevation. Furthermore, we measured PLC activity in intact neurons by using exogenous TRPC6 channel as a biosensor for the PLC product diacylglycerol and found that the receptor-driven PLC activation exhibited similar [Ca(2+)](i) dependence to that of endocannabinoid release. Neither endocannabinoid release nor PLC activation was induced by receptor activation in PLCbeta1 knockout mice. We therefore conclude that PLCbeta1 serves as a coincidence detector through its Ca(2+) dependency for endocannabinoid release in hippocampal neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum.

Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G(q/11)-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabin...

متن کامل

Sustained elevation of dendritic calcium evokes widespread endocannabinoid release and suppression of synapses onto cerebellar Purkinje cells.

Endocannabinoids can act as retrograde messengers that allow postsynaptic cells to regulate the strength of their synaptic inputs. In the cerebellum, Purkinje cells (PCs) release endocannabinoids through two mechanisms. Synaptic activation evokes local endocannabinoid release that relies on a pathway that involves the metabotropic glutamate receptor mGluR1 and phospholipase-C (PLC). In contrast...

متن کامل

Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microflu...

متن کامل

Neurotensin reduces glutamatergic transmission in the dorsolateral striatum via retrograde endocannabinoid signaling.

Neurotensin is a peptide that has been suggested to mimic the actions of antipsychotics, but little is known about how it affects synaptic transmission in the striatum, the major input nucleus of the basal ganglia. In this study we measured the effects of neurotensin on EPSCs from medium spiny projection neurons in the sensorimotor striatum, a region implicated in habit formation and control of...

متن کامل

Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta.

During the first cell cycle Ca2+ oscillations are regulated in a cell cycle-dependent manner, such that the oscillations are unique to M phase. How the Ca2+ oscillations are regulated with such cell cycle stage-dependency is unknown, despite their importance for egg activation and embryo development. We recently identified a novel, sperm-specific phospholipase C (PLCzeta; PLCzeta) that triggers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2005